Полная таблица теплопроводности различных строительных материалов. Пленка полиэтиленовая теплопроводность


Теплопроводность полиэтилена

Полиэтилен не пропускает теплоТеплопроводность представляет собой способность какого-то материала передавать через себя тепловой поток, возникающий от разности температурных показателей на противоположных поверхностях. Разные материалы проводят теплоту по-своему: одни это делают быстрее (к примеру, металлы), другие значительно медленнее (изоляционные материалы).

Понятие теплопроводности исходит из количества теплоты (Дж), которая в течение 1 часа проходит через образец материала имеющего толщину 1 метр, площадь 1 м. кв., с разностью температуры на плоскопараллельных противоположных поверхностях в 1 К. Обозначается теплопроводность буквой А и выражается в Вт/(м К). Материалы имеющие теплопроводность не больше 0,175 Вт/(м • К), среднюю температуру слоя 298 К и влажность, определенную ГОСТами или ТУ относятся к теплоизоляционным.

Теплопроводность напрямую зависит от плотности материала (теплопроводность возрастает при увеличении плотности), его влажности, пористости, структуры и средней температуры слоя. С повышением пористости теплопроводность снижается, а увеличение влажности материала ведет к резкому росту теплопроводности, но снижает теплоизоляционные свойства. В связи с этим теплоизоляционные материалы необходимо хранить в помещении, а в теплоизоляционных конструкциях предусмотрена защита от попадания влаги в виде покровного слоя.

Полиэтилен представляет собой пластический материал, имеющий хорошие диэлектрические свойства. Ударостойкий, не ломается, имеет небольшую поглотительную способность. Обладает низкой газо и паропроницаемостью, не растворяется в органических растворителях. Полиэтилен изготавливается двух видов – высокого давления и низкого давления.

Полиэтилен легко поддается переработке и подвергается модификации. В результате есть возможность улучшения его теплопроводности и химической стойкости. Несмотря на то, что полиэтилен имеет хорошие теплоизоляционные свойства, в подземных трубопроводах теплоизоляционные свойства грунта иногда более значимы, чем те же свойства самой трубы.

Коэффициент теплопроводности полиэтилена составляет 0,36-0,43 Вт/м0К.

Учеными проводятся испытания по получению полимерного материала, который бы отличался более высокой теплопроводностью. Уже достигнуты определенные результаты, позволяющие использовать полиэтиленовые волокна в качестве более дешевой замены металлам.

propolyethylene.ru

Коэффициент теплопроводности полиэтиленовой пленки - ЛентаПак

Выбрать полиэтиленовая пленка по параметрам, фото, стоимости.

commerce_icoВыберите характеристики

Вид

Парниковая Техническая Армированная Термоусадочная

Ширина полотна, мм

1500 (стандартная) 1000 2000 (армированная)

Тип

рукав полурукав полотно

Длина намотки, м

100 (стандарт) 25 (армированная) 50 50 (армированная)

Толщина полотна, мкм

120 (стандарт) 60 80 100 150 150 200

Кол-во рулонов, шт

1 2 3 4 5 10 15 20 >20 (опт.)

Чтобы с максимальной пользой применять различные строительные материалы, в лабораторных условиях проводится испытание их физических и химических свойств и математический расчет показаний, в том числе и коэффициент теплопроводности полиэтиленовой пленки и других материалов. Такие данные необходимы для определения наиболее эффективных методов утепления зданий, построенных из различных материалов: кирпича, дерева, стеновых панелей, ракушечника, шлаковых и бетонных блоков.

Паро и влагонепроницаемая полиэтиленовая пленка широко используется для гидроизоляции фундаментов, наливных полов, подвалов, бассейнов и других искусственных водоемов. С помощью пленки удается создать оптимальные условия для выдержки бетона и приобретения им максимальной прочности, поскольку в процессе «созревания» конструкции влага испаряется постепенно. В этом случае коэффициент теплопроводности полиэтиленовой пленки имеет меньшее значение в сравнении с уровнем паропроницаемости и влагозащиты.

Коэффициент теплопроводности полиэтиленовой пленки равен 0,3 Вт/(м*К)

При теплоизоляции зданий с внутренней стороны под утеплитель кладут пленку, которая не будет пропускать пар, а вместе с ним и тепло из помещения наружу. Внешнее полиэтиленовое полотно должно пропускать пар, который выходит из утеплителя, и не пропускать влагу снаружи. В этом случае утеплитель не будет намокать, поэтому коэффициент теплопроводности его останется максимальным за счет правильного применения полиэтиленовой пленки для изоляции.

Еще на стадии разработки технологий для изготовления теплоизоляционных панелей принимается во внимание коэффициент теплопроводности полиэтиленовой пленки и других материалов для утепления. Просчитываются эти показатели, исходя из плотности вещества (кг/м куб.). Для полиэтилена коэффициент равен 0,3 Вт/ (м*К).

lentapack.ru

Полная таблица теплопроводности строительных материалов

Таблица теплопроводности материалов

Материал Плотность,кг/м3 Теплопроводность,Вт/(м·град) Теплоемкость,Дж/(кг·град)
ABS (АБС пластик) 1030…1060 0.13…0.22 1300…2300
Аглопоритобетон и бетон на топливных (котельных) шлаках 1000…1800 0.29…0.7 840
Акрил (акриловое стекло, полиметилметакрилат, оргстекло) ГОСТ 17622—72 1100…1200 0.21
Альфоль 20…40 0.118…0.135
Алюминий (ГОСТ 22233-83) 2600 221 840
Асбест волокнистый 470 0.16 1050
Асбестоцемент 1500…1900 1.76 1500
Асбестоцементный лист 1600 0.4 1500
Асбозурит 400…650 0.14…0.19
Асбослюда 450…620 0.13…0.15
Асботекстолит Г ( ГОСТ 5-78) 1500…1700 1670
Асботермит 500 0.116…0.14
Асбошифер с высоким содержанием асбеста 1800 0.17…0.35
Асбошифер с 10-50% асбеста 1800 0.64…0.52
Асбоцемент войлочный 144 0.078
Асфальт 1100…2110 0.7 1700…2100
Асфальтобетон (ГОСТ 9128-84) 2100 1.05 1680
Асфальт в полах 0.8
Ацеталь (полиацеталь, полиформальдегид) POM 1400 0.22
Аэрогель (Aspen aerogels) 110…200 0.014…0.021 700
Базальт 2600…3000 3.5 850
Бакелит 1250 0.23
Бальза 110…140 0.043…0.052
Береза 510…770 0.15 1250
Бетон легкий с природной пемзой 500…1200 0.15…0.44
Бетон на гравии или щебне из природного камня 2400 1.51 840
Бетон на вулканическом шлаке 800…1600 0.2…0.52 840
Бетон на доменных гранулированных шлаках 1200…1800 0.35…0.58 840
Бетон на зольном гравии 1000…1400 0.24…0.47 840
Бетон на каменном щебне 2200…2500 0.9…1.5
Бетон на котельном шлаке 1400 0.56 880
Бетон на песке 1800…2500 0.7 710
Бетон на топливных шлаках 1000…1800 0.3…0.7 840
Бетон силикатный плотный 1800 0.81 880
Бетон сплошной 1.75
Бетон термоизоляционный 500 0.18
Битумоперлит 300…400 0.09…0.12 1130
Битумы нефтяные строительные и кровельные (ГОСТ 6617-76, ГОСТ 9548-74) 1000…1400 0.17…0.27 1680
Блок газобетонный 400…800 0.15…0.3
Блок керамический поризованный 0.2
Бронза 7500…9300 22…105 400
Бумага 700…1150 0.14 1090…1500
Бут 1800…2000 0.73…0.98
Вата минеральная легкая 50 0.045 920
Вата минеральная тяжелая 100…150 0.055 920
Вата стеклянная 155…200 0.03 800
Вата хлопковая 30…100 0.042…0.049
Вата хлопчатобумажная 50…80 0.042 1700
Вата шлаковая 200 0.05 750
Вермикулит (в виде насыпных гранул) ГОСТ 12865-67 100…200 0.064…0.076 840
Вермикулит вспученный (ГОСТ 12865-67) — засыпка 100…200 0.064…0.074 840
Вермикулитобетон 300…800 0.08…0.21 840
Войлок шерстяной 150…330 0.045…0.052 1700
Газо- и пенобетон, газо- и пеносиликат 300…1000 0.08…0.21 840
Газо- и пенозолобетон 800…1200 0.17…0.29 840
Гетинакс 1350 0.23 1400
Гипс формованный сухой 1100…1800 0.43 1050
Гипсокартон 500…900 0.12…0.2 950
Гипсоперлитовый раствор 0.14
Гипсошлак 1000…1300 0.26…0.36
Глина 1600…2900 0.7…0.9 750
Глина огнеупорная 1800 1.04 800
Глиногипс 800…1800 0.25…0.65
Глинозем 3100…3900 2.33 700…840
Гнейс (облицовка) 2800 3.5 880
Гравий (наполнитель) 1850 0.4…0.93 850
Гравий керамзитовый (ГОСТ 9759-83) — засыпка 200…800 0.1…0.18 840
Гравий шунгизитовый (ГОСТ 19345-83) — засыпка 400…800 0.11…0.16 840
Гранит (облицовка) 2600…3000 3.5 880
Грунт 10% воды 1.75
Грунт 20% воды 1700 2.1
Грунт песчаный 1.16 900
Грунт сухой 1500 0.4 850
Грунт утрамбованный 1.05
Гудрон 950…1030 0.3
Доломит плотный сухой 2800 1.7
Дуб вдоль волокон 700 0.23 2300
Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83) 700 0.1 2300
Дюралюминий 2700…2800 120…170 920
Железо 7870 70…80 450
Железобетон 2500 1.7 840
Железобетон набивной 2400 1.55 840
Зола древесная 780 0.15 750
Золото 19320 318 129
Известняк (облицовка) 1400…2000 0.5…0.93 850…920
Изделия из вспученного перлита на битумном связующем (ГОСТ 16136-80) 300…400 0.067…0.11 1680
Изделия вулканитовые 350…400 0.12
Изделия диатомитовые 500…600 0.17…0.2
Изделия ньювелитовые 160…370 0.11
Изделия пенобетонные 400…500 0.19…0.22
Изделия перлитофосфогелевые 200…300 0.064…0.076
Изделия совелитовые 230…450 0.12…0.14
Иней 0.47
Ипорка (вспененная смола) 15 0.038
Каменноугольная пыль 730 0.12
Камни многопустотные из легкого бетона 500…1200 0.29…0.6
Камни полнотелые из легкого бетона DIN 18152 500…2000 0.32…0.99
Камни полнотелые из природного туфа или вспученной глины 500…2000 0.29…0.99
Камень строительный 2200 1.4 920
Карболит черный 1100 0.23 1900
Картон асбестовый изолирующий 720…900 0.11…0.21
Картон гофрированный 700 0.06…0.07 1150
Картон облицовочный 1000 0.18 2300
Картон парафинированный 0.075
Картон плотный 600…900 0.1…0.23 1200
Картон пробковый 145 0.042
Картон строительный многослойный (ГОСТ 4408-75) 650 0.13 2390
Картон термоизоляционный (ГОСТ 20376-74) 500 0.04…0.06
Каучук вспененный 82 0.033
Каучук вулканизированный твердый серый 0.23
Каучук вулканизированный мягкий серый 920 0.184
Каучук натуральный 910 0.18 1400
Каучук твердый 0.16
Каучук фторированный 180 0.055…0.06
Кедр красный 500…570 0.095
Кембрик лакированный 0.16
Керамзит 800…1000 0.16…0.2 750
Керамзитовый горох 900…1500 0.17…0.32 750
Керамзитобетон на кварцевом песке с поризацией 800…1200 0.23…0.41 840
Керамзитобетон легкий 500…1200 0.18…0.46
Керамзитобетон на керамзитовом песке и керамзитопенобетон 500…1800 0.14…0.66 840
Керамзитобетон на перлитовом песке 800…1000 0.22…0.28 840
Керамика 1700…2300 1.5
Керамика теплая 0.12
Кирпич доменный (огнеупорный) 1000…2000 0.5…0.8
Кирпич диатомовый 500 0.8
Кирпич изоляционный 0.14
Кирпич карборундовый 1000…1300 11…18 700
Кирпич красный плотный 1700…2100 0.67 840…880
Кирпич красный пористый 1500 0.44
Кирпич клинкерный 1800…2000 0.8…1.6
Кирпич кремнеземный 0.15
Кирпич облицовочный 1800 0.93 880
Кирпич пустотелый 0.44
Кирпич силикатный 1000…2200 0.5…1.3 750…840
Кирпич силикатный с тех. пустотами 0.7
Кирпич силикатный щелевой 0.4
Кирпич сплошной 0.67
Кирпич строительный 800…1500 0.23…0.3 800
Кирпич трепельный 700…1300 0.27 710
Кирпич шлаковый 1100…1400 0.58
Кладка бутовая из камней средней плотности 2000 1.35 880
Кладка газосиликатная 630…820 0.26…0.34 880
Кладка из газосиликатных теплоизоляционных плит 540 0.24 880
Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе 1600 0.47 880
Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе 1800 0.56 880
Кладка из глиняного обыкновенного кирпича на цементно-шлаковом растворе 1700 0.52 880
Кладка из керамического пустотного кирпича на цементно-песчаном растворе 1000…1400 0.35…0.47 880
Кладка из малоразмерного кирпича 1730 0.8 880
Кладка из пустотелых стеновых блоков 1220…1460 0.5…0.65 880
Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе 1500 0.64 880
Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе 1400 0.52 880
Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе 1800 0.7 880
Кладка из трепельного кирпича (ГОСТ 648-73) на цементно-песчаном растворе 1000…1200 0.29…0.35 880
Кладка из ячеистого кирпича 1300 0.5 880
Кладка из шлакового кирпича на цементно-песчаном растворе 1500 0.52 880
Кладка «Поротон» 800 0.31 900
Клен 620…750 0.19
Кожа 800…1000 0.14…0.16
Композиты технические 0.3…2
Краска масляная (эмаль) 1030…2045 0.18…0.4 650…2000
Кремний 2000…2330 148 714
Кремнийорганический полимер КМ-9 1160 0.2 1150
Латунь 8100…8850 70…120 400
Лед -60°С 924 2.91 1700
Лед -20°С 920 2.44 1950
Лед 0°С 917 2.21 2150
Линолеум поливинилхлоридный многослойный (ГОСТ 14632-79) 1600…1800 0.33…0.38 1470
Линолеум поливинилхлоридный на тканевой подоснове (ГОСТ 7251-77) 1400…1800 0.23…0.35 1470
Липа, (15% влажности) 320…650 0.15
Лиственница 670 0.13
Листы асбестоцементные плоские (ГОСТ 18124-75) 1600…1800 0.23…0.35 840
Листы вермикулитовые 0.1
Листы гипсовые обшивочные (сухая штукатурка) ГОСТ 6266 800 0.15 840
Листы пробковые легкие 220 0.035
Листы пробковые тяжелые 260 0.05
Магнезия в форме сегментов для изоляции труб 220…300 0.073…0.084
Мастика асфальтовая 2000 0.7
Маты, холсты базальтовые 25…80 0.03…0.04
Маты и полосы из стеклянного волокна прошивные (ТУ 21-23-72-75) 150 0.061 840
Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем(ГОСТ 9573-82) 50…125 0.048…0.056 840
МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5 (ТУ 5769-003-48588528-00) 100…150 0.038
Мел 1800…2800 0.8…2.2 800…880
Медь (ГОСТ 859-78) 8500 407 420
Миканит 2000…2200 0.21…0.41 250
Мипора 16…20 0.041 1420
Морозин 100…400 0.048…0.084
Мрамор (облицовка) 2800 2.9 880
Накипь котельная (богатая известью, при 100°С) 1000…2500 0.15…2.3
Накипь котельная (богатая силикатом, при 100°С) 300…1200 0.08…0.23
Настил палубный 630 0.21 1100
Найлон 0.53
Нейлон 1300 0.17…0.24 1600
Неопрен 0.21 1700
Опилки древесные 200…400 0.07…0.093
Пакля 150 0.05 2300
Панели стеновые из гипса DIN 1863 600…900 0.29…0.41
Парафин 870…920 0.27
Паркет дубовый 1800 0.42 1100
Паркет штучный 1150 0.23 880
Паркет щитовой 700 0.17 880
Пемза 400…700 0.11…0.16
Пемзобетон 800…1600 0.19…0.52 840
Пенобетон 300…1250 0.12…0.35 840
Пеногипс 300…600 0.1…0.15
Пенозолобетон 800…1200 0.17…0.29
Пенопласт ПС-1 100 0.037
Пенопласт ПС-4 70 0.04
Пенопласт ПХВ-1 (ТУ 6-05-1179-75) и ПВ-1 (ТУ 6-05-1158-78) 65…125 0.031…0.052 1260
Пенопласт резопен ФРП-1 65…110 0.041…0.043
Пенополистирол (ГОСТ 15588-70) 40 0.038 1340
Пенополистирол (ТУ 6-05-11-78-78) 100…150 0.041…0.05 1340
Пенополистирол «Пеноплекс» 35…43 0.028…0.03 1600
Пенополиуретан (ТУ В-56-70, ТУ 67-98-75, ТУ 67-87-75) 40…80 0.029…0.041 1470
Пенополиуретановые листы 150 0.035…0.04
Пенополиэтилен 0.035…0.05
Пенополиуретановые панели 0.025
Пеносиликальцит 400…1200 0.122…0.32
Пеностекло легкое 100..200 0.045…0.07
Пеностекло или газо-стекло (ТУ 21-БССР-86-73) 200…400 0.07…0.11 840
Пенофол 44…74 0.037…0.039
Пергамент 0.071
Пергамин (ГОСТ 2697-83) 600 0.17 1680
Перекрытие армокерамическое с бетонным заполнением без штукатурки 1100…1300 0.7 850
Перекрытие из железобетонных элементов со штукатуркой 1550 1.2 860
Перекрытие монолитное плоское железобетонное 2400 1.55 840
Перлит 200 0.05
Перлит вспученный 100 0.06
Перлитобетон 600…1200 0.12…0.29 840
Перлитопласт-бетон (ТУ 480-1-145-74) 100…200 0.035…0.041 1050
Перлитофосфогелевые изделия (ГОСТ 21500-76) 200…300 0.064…0.076 1050
Песок 0% влажности 1500 0.33 800
Песок 10% влажности 0.97
Песок 20% влажности 1.33
Песок для строительных работ (ГОСТ 8736-77) 1600 0.35 840
Песок речной мелкий 1500 0.3…0.35 700…840
Песок речной мелкий (влажный) 1650 1.13 2090
Песчаник обожженный 1900…2700 1.5
Пихта 450…550 0.1…0.26 2700
Плита бумажная прессованая 600 0.07
Плита пробковая 80…500 0.043…0.055 1850
Плитка облицовочная, кафельная 2000 1.05
Плитка термоизоляционная ПМТБ-2 0.04
Плиты алебастровые 0.47 750
Плиты из гипса ГОСТ 6428 1000…1200 0.23…0.35 840
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74, ГОСТ 10632-77) 200…1000 0.06…0.15 2300
Плиты из керзмзито-бетона 400…600 0.23
Плиты из полистирол-бетона ГОСТ Р 51263-99 200…300 0.082
Плиты из резольноформальдегидного пенопласта (ГОСТ 20916-75) 40…100 0.038…0.047 1680
Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499-78) 50 0.056 840
Плиты из ячеистого бетона ГОСТ 5742-76 350…400 0.093…0.104
Плиты камышитовые 200…300 0.06…0.07 2300
Плиты кремнезистые 0.07
Плиты льнокостричные изоляционные 250 0.054 2300
Плиты минераловатные на битумной связке марки 200 ГОСТ 10140-80 150…200 0.058
Плиты минераловатные на синтетическом связующем марки 200 ГОСТ 9573-96 225 0.054
Плиты минераловатные на синтетической связке фирмы «Партек» (Финляндия) 170…230 0.042…0.044
Плиты минераловатные повышенной жесткости ГОСТ 22950-95 200 0.052 840
Плиты минераловатные повышенной жесткости на органофосфатном связующем(ТУ 21-РСФСР-3-72-76) 200 0.064 840
Плиты минераловатные полужесткие на крахмальном связующем 125…200 0.056…0.07 840
Плиты минераловатные на синтетическом и битумном связующих 0.048…0.091
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическоми битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66) 50…350 0.048…0.091 840
Плиты пенопластовые на основе резольных фенолформальдегидных смол ГОСТ 20916-87 80…100 0.045
Плиты пенополистирольные ГОСТ 15588-86 безпрессовые 30…35 0.038
Плиты пенополистирольные (экструзионные) ТУ 2244-001-47547616-00 32 0.029
Плиты перлито-битумные ГОСТ 16136-80 300 0.087
Плиты перлито-волокнистые 150 0.05
Плиты перлито-фосфогелевые ГОСТ 21500-76 250 0.076
Плиты перлито-1 Пластбетонные ТУ 480-1-145-74 150 0.044
Плиты перлитоцементные 0.08
Плиты строительный из пористого бетона 500…800 0.22…0.29
Плиты термобитумные теплоизоляционные 200…300 0.065…0.075
Плиты торфяные теплоизоляционные (ГОСТ 4861-74) 200…300 0.052…0.064 2300
Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе 300…800 0.07…0.16 2300
Покрытие ковровое 630 0.2 1100
Покрытие синтетическое (ПВХ) 1500 0.23
Пол гипсовый бесшовный 750 0.22 800
Поливинилхлорид (ПВХ) 1400…1600 0.15…0.2
Поликарбонат (дифлон) 1200 0.16 1100
Полипропилен (ГОСТ 26996 – 86) 900…910 0.16…0.22 1930
Полистирол УПП1, ППС 1025 0.09…0.14 900
Полистиролбетон (ГОСТ 51263) 200…600 0.065…0.145 1060
Полистиролбетон модифицированный наактивированном пластифицированном шлакопортландцементе 200…500 0.057…0.113 1060
Полистиролбетон модифицированный накомпозиционном малоклинкерном вяжущем в стеновых блоках и плитах 200…500 0.052…0.105 1060
Полистиролбетон модифицированный монолитный на портландцементе 250…300 0.075…0.085 1060
Полистиролбетон модифицированный нашлакопортландцементе в стеновых блоках и плитах 200…500 0.062…0.121 1060
Полиуретан 1200 0.32
Полихлорвинил 1290…1650 0.15 1130…1200
Полиэтилен высокой плотности 955 0.35…0.48 1900…2300
Полиэтилен низкой плотности 920 0.25…0.34 1700
Поролон 34 0.04
Портландцемент (раствор) 0.47
Прессшпан 0.26…0.22
Пробка гранулированная 45 0.038 1800
Пробка минеральная на битумной основе 270…350 0.28
Пробка техническая 50 0.037 1800
Ракушечник 1000…1800 0.27…0.63
Раствор гипсовый затирочный 1200 0.5 900
Раствор гипсоперлитовый 600 0.14 840
Раствор гипсоперлитовый поризованный 400…500 0.09…0.12 840
Раствор известковый 1650 0.85 920
Раствор известково-песчаный 1400…1600 0.78 840
Раствор легкий LM21, LM36 700…1000 0.21…0.36
Раствор сложный (песок, известь, цемент) 1700 0.52 840
Раствор цементный, цементная стяжка 2000 1.4
Раствор цементно-песчаный 1800…2000 0.6…1.2 840
Раствор цементно-перлитовый 800…1000 0.16…0.21 840
Раствор цементно-шлаковый 1200…1400 0.35…0.41 840
Резина мягкая 0.13…0.16 1380
Резина твердая обыкновенная 900…1200 0.16…0.23 1350…1400
Резина пористая 160…580 0.05…0.17 2050
Рубероид (ГОСТ 10923-82) 600 0.17 1680
Руда железная 2.9
Сажа ламповая 170 0.07…0.12
Сера ромбическая 2085 0.28 762
Серебро 10500 429 235
Сланец глинистый вспученный 400 0.16
Сланец 2600…3300 0.7…4.8
Слюда вспученная 100 0.07
Слюда поперек слоев 2600…3200 0.46…0.58 880
Слюда вдоль слоев 2700…3200 3.4 880
Смола эпоксидная 1260…1390 0.13…0.2 1100
Снег свежевыпавший 120…200 0.1…0.15 2090
Снег лежалый при 0°С 400…560 0.5 2100
Сосна и ель вдоль волокон 500 0.18 2300
Сосна и ель поперек волокон (ГОСТ 8486-66, ГОСТ 9463-72) 500 0.09 2300
Сосна смолистая 15% влажности 600…750 0.15…0.23 2700
Сталь стержневая арматурная (ГОСТ 10884-81) 7850 58 482
Стекло оконное (ГОСТ 111-78) 2500 0.76 840
Стекловата 155…200 0.03 800
Стекловолокно 1700…2000 0.04 840
Стеклопластик 1800 0.23 800
Стеклотекстолит 1600…1900 0.3…0.37
Стружка деревянная прессованая 800 0.12…0.15 1080
Стяжка ангидритовая 2100 1.2
Стяжка из литого асфальта 2300 0.9
Текстолит 1300…1400 0.23…0.34 1470…1510
Термозит 300…500 0.085…0.13
Тефлон 2120 0.26
Ткань льняная 0.088
Толь (ГОСТ 10999-76) 600 0.17 1680
Тополь 350…500 0.17
Торфоплиты 275…350 0.1…0.12 2100
Туф (облицовка) 1000…2000 0.21…0.76 750…880
Туфобетон 1200…1800 0.29…0.64 840
Уголь древесный кусковой (при 80°С) 190 0.074
Уголь каменный газовый 1420 3.6
Уголь каменный обыкновенный 1200…1350 0.24…0.27
Фарфор 2300…2500 0.25…1.6 750…950
Фанера клееная (ГОСТ 3916-69) 600 0.12…0.18 2300…2500
Фибра красная 1290 0.46
Фибролит (серый) 1100 0.22 1670
Целлофан 0.1
Целлулоид 1400 0.21
Цементные плиты 1.92
Черепица бетонная 2100 1.1
Черепица глиняная 1900 0.85
Черепица из ПВХ асбеста 2000 0.85
Чугун 7220 40…60 500
Шевелин 140…190 0.056…0.07
Шелк 100 0.038…0.05
Шлак гранулированный 500 0.15 750
Шлак доменный гранулированный 600…800 0.13…0.17
Шлак котельный 1000 0.29 700…750
Шлакобетон 1120…1500 0.6…0.7 800
Шлакопемзобетон (термозитобетон) 1000…1800 0.23…0.52 840
Шлакопемзопено- и шлакопемзогазобетон 800…1600 0.17…0.47 840
Штукатурка гипсовая 800 0.3 840
Штукатурка известковая 1600 0.7 950
Штукатурка из синтетической смолы 1100 0.7
Штукатурка известковая с каменной пылью 1700 0.87 920
Штукатурка из полистирольного раствора 300 0.1 1200
Штукатурка перлитовая 350…800 0.13…0.9 1130
Штукатурка сухая 0.21
Штукатурка утепляющая 500 0.2
Штукатурка фасадная с полимерными добавками 1800 1 880
Штукатурка цементная 0.9
Штукатурка цементно-песчаная 1800 1.2
Шунгизитобетон 1000…1400 0.27…0.49 840
Щебень и песок из перлита вспученного (ГОСТ 10832-83) — засыпка 200…600 0.064…0.11 840
Щебень из доменного шлака (ГОСТ 5578-76), шлаковой пемзы (ГОСТ 9760-75)и аглопорита (ГОСТ 11991-83) — засыпка 400…800 0.12…0.18 840
Эбонит 1200 0.16…0.17 1430
Эбонит вспученный 640 0.032
Эковата 35…60 0.032…0.041 2300
Энсонит (прессованный картон) 400…500 0.1…0.11
Эмаль (кремнийорганическая) 0.16…0.27

termoizol.com

Свойства полимеров - технические характеристики полимеров

quality_High_impact_Polystyrene_granule_HIPS_recycleПоказатель текучести расплава

Показатель текучести расплава полиэтилена (ПТР полиэтилена) характеризует его вязкость. Данный показатель определяет, сколько полиэтилена под определенным давлением и заданной температуре за десять минут выдавится через тонкий сосуд — капилляр. Чем выше данный показатель, тем полиэтилен более текучий и менее вязкий. Данный параметр имеет важность для выбора способа переработки полиэтилена. Например, для производства пленки методом экструзии необходимо, чтобы расплав был достаточно вязким, поэтому используют марки полиэтилена с низкими значениями ПТР.

Требования к определению показателя текучести расплава полиэтиленаВ различных странах существуют стандарты, в которых расписаны температуры и уровень нагрузки рекомендованные для определения показателя текучести расплава полиэтилена. Для разных видов полиэтилена применяют свои нагрузки и температуры. Поэтому сравнение ПТР полиэтилена низкого давления и ПТР полиэтилена высокого давления является некорректным, поскольку для определения показателя текучести берутся разные показатели нагрузки. Сравнивать можно только ПТР материалов одного вида разных марок.

Страна (группа стран) Наименование стандарта
Россия ГОСТ 11645-73
Германия ВШ 53735
США АСТМВ 1238-73
Европа ИСО 1133-76

Для измерения ПТР полиэтилена обычно используют системы ИИРТ различных модификаций, принцип действия которых основан на действии капиллярного вискозиметра.

Значение показателей текучести расплава различных видов и базовых марок полиэтилена

Базовая марка ПТР, г/10 мин.
Полиэтилен высокого давления плотностью 922-926 кг/м3
марки 2 0,24 — 0,36
марки 6 0,56 – 0,84
марки 13 3,4 – 4,6
марки 69 3 – 5
марки 84 16 — 24
Полиэтилен высокого давления плотностью 917-921 кг/м3
марки 7 и 8 1,7 – 2,3
марки 15 5,95 – 8,05
марки 20 и 21 17 — 23
марки 50 0,14 – 0,26
марки 55 0,3 – 0,5
марки 58, 62 и 64 1,5 – 2,5
марки 66 0,825 – 1,375
марки 68 5,25 – 8,75
марки 74 и 84 16 — 24
марки 75 и 76 0,45 – 0,75
марки 77 0,8 – 1,2
марки 78 1,125 – 1,875
марки 80 2,1 – 3,9
марки 81 2,45 – 4,55
марки 82 4,125 – 6,875
марки 83 9 – 15
Полиэтилен высокого давления плотностью 927-930 кг/м3
марки 63 0,375 – 0,625
марки 60 0,6 – 1
Суспензионный полиэтилен низкого давления плотностью 0,948-0,959 г/см3
марки 1 до 0,1
марки 2 0,1 – 0,3
марки 3 0,3 – 0,6
марки 4 и 5 0,5 – 0,9
марки 6 0,9 – 1,5
марки 7 1,2 – 2
марки 8 1,8 – 3
марки 9 3 – 5
марки 10 5 — 10
Газофазный полиэтилен низкого давления
марки 71 с термостабилизатором неокрашенный или слабоокрашенный 0,45 – 0,65
марки 73 с термо- и светостабилизаторами черного цвета 0,3 – 0,55
марки 73 с термостабилизатором первичной переработки неокрашенный 0,4 – 0,65
марки 73 с термо- и светостабилизаторами, черного цвета стойкий к фотоокислительному старению 0,3 – 0,55
марки 76 2,6 – 3,2
марки 77 17 — 25

Теплопроводность

Теплопроводность представляет собой способность какого-то материала передавать через себя тепловой поток, возникающий от разности температурных показателей на противоположных поверхностях. Разные материалы проводят теплоту по-своему: одни это делают быстрее (к примеру, металлы), другие значительно медленнее (изоляционные материалы).

Понятие теплопроводности исходит из количества теплоты (Дж), которая в течение 1 часа проходит через образец материала имеющего толщину 1 метр, площадь 1 м. кв., с разностью температуры на плоскопараллельных противоположных поверхностях в 1 К. Обозначается теплопроводность буквой А и выражается в Вт/(м К). Материалы имеющие теплопроводность не больше 0,175 Вт/(м • К), среднюю температуру слоя 298 К и влажность, определенную ГОСТами или ТУ относятся к теплоизоляционным.

Теплопроводность напрямую зависит от плотности материала (теплопроводность возрастает при увеличении плотности), его влажности, пористости, структуры и средней температуры слоя. С повышением пористости теплопроводность снижается, а увеличение влажности материала ведет к резкому росту теплопроводности, но снижает теплоизоляционные свойства. В связи с этим теплоизоляционные материалы необходимо хранить в помещении, а в теплоизоляционных конструкциях предусмотрена защита от попадания влаги в виде покровного слоя.

Полиэтилен представляет собой пластический материал, имеющий хорошие диэлектрические свойства. Ударостойкий, не ломается, имеет небольшую поглотительную способность. Обладает низкой газо и паропроницаемостью, не растворяется в органических растворителях. Полиэтилен изготавливается двух видов – высокого давления и низкого давления.

Полиэтилен легко поддается переработке и подвергается модификации. В результате есть возможность улучшения его теплопроводности и химической стойкости. Несмотря на то, что полиэтилен имеет хорошие теплоизоляционные свойства, в подземных трубопроводах теплоизоляционные свойства грунта иногда более значимы, чем те же свойства самой трубы.

Коэффициент теплопроводности полиэтилена составляет 0,36-0,43 Вт/м0К.Учеными проводятся испытания по получению полимерного материала, который бы отличался более высокой теплопроводностью. Уже достигнуты определенные результаты, позволяющие использовать полиэтиленовые волокна в качестве более дешевой замены металлам.

Удельный вес

Удельный вес (он же — плотность) полиэтилена меняется в незначительных пределах — от 0,91 до 0,976 г/см3.

В то же время, свойства полиэтилена с высоким удельным весом существенно отличаются от свойств материала с низким удельным весом. Происходит это из-за того, что существуют две различные технологии производства полиэтилена. Фактически, синтезируются два разных материала с одинаковым названием и формулой.

Гирьки для измерения удельного весаСинтезом при высоком давлении (100-280 МПа) получают полиэтилен низкой плотности. В России его обозначают аббревиатурами ПЭНП (низкой плотности) и ПВД (высокого давления), а в англоязычном мире — LD PE (Low Density Polyethylene).

Напротив, полиэтилен высокой плотности получают синтезом при низком давлении (0,1-0,5 МПа). За границей этот материал обозначают как HD PE (High Density Polyethylene), а у нас — ПЭВП и ПНД.

Свойства ПВД (LD PE)Удельный вес этой разновидности полиэтилена — около 0,92 г/см3. Полимерные цепочки имеют сравнительно небольшую длину, но зато обладают значительным количеством поперечных связей. Температура плавления не превышает 110°C. Материал получается пластичным, он легко тянется и не боится механических повреждений.

Свойства ПНД (HD PE)Удельный вес выше — порядка 0,95 г/см3. Отличие свойств обусловлено более длинными полимерными цепочками: температура плавления выше 130°C, Этот тип полиэтилена менее пластичен, зато он способен выдерживать более высокую нагрузку.

Внешние отличия разных сортов полиэтиленаЕсли сравнивать плёнки, полученные из ПВД и ПНД, то первые имеют большую толщину, легче растягиваются и на ощупь кажутся слегка жирными. В отличие от них, плёнки из ПНД очень тонкие, более жёсткие и за счёт этого издают характерное шуршание при смятии. К их недостаткам следует отнести так называемый “эффект молнии” — при точечном проколе плёнка из такого материала может практически без усилия разорваться на две половины.

Свойства смесового полиэтилена (ПСД)Чтобы избавиться от недостатков, присущих этим двум разновидностям полиэтилена, технологи изобрели материал, называющийся смесовым полиэтиленом. Как ясно из названия, он получается путём смешивания гранул ПВД и ПСД при производстве готовых изделий. Кроме того, к композиции добавляют небольшое количество вспомогательных компонентов, улучшающих внешний вид готового изделия. Меняя пропорции ПВД и ПСД, можно получить материал с заданными свойствами — более пластичный или более жёсткий.

Температура плавления

Температура плавления различных сортов полиэтилена составляет от 103 до 137°C.

Анализируя этот показатель, можно разделить все разновидности этого полимера на две большие группы. У представителей первой группы температура плавления находится в пределах от 103 до 110°C, а у второй — от 130 до 137°C. Отличия связаны с тем, что существуют две принципиально отличающиеся технологии производства полиэтилена. Поэтому свойства материалов, полученных по разным технологиям, заметно отличаются.

Плавление полиэтиленаПри давлении 100-288 МПа синтезируют полиэтилен c низким удельным весом. В России чаще всего его обозначают аббревиатурой ПВД (высокого давления), а за рубежом — LDPE (полиэтилен с низкой плотностью, Low Density Polyethylene).

В отличие от первого метода, полиэтилен высокой плотности получают синтезом при невысоком давлении (0,1-0,495 МПа). Международное общепринятое обозначение этого материала — HDPE (полиэтилен с высокой плотностью — High Density Polyethylene), а у нас — ПНД (то есть низкого давления).

На большинстве изделий из полиэтилена, изготовленных в России, присутствует интернациональная маркировка — HDPE либо LDPE. Мы также будем придерживаться терминологии, принятой во всём мире.

Свойства ПВДПолимерные цепочки этого материала короткие и разветвлённые, за счёт этого материал имеет низкую плотность — около 0,92 г/см3. Температура плавления ПВД низкая. Этот полиэтилен пластичен — легко тянется и устойчив к механическим повреждениям. За счёт низкого удельного веса он имеет меньшую теплопроводность и теплоёмкость. Из LD PE также изготавливают вспененный полиэтилен, являющийся хорошим теплоизолятором.

Свойства ПНДУдельный вес — выше, чем у LDPE — порядка 0,95 г/см3. На изменение свойств влияют более длинные полимерные цепочки с меньшим количеством устойчивых поперечных связей. Температура его плавления — высокая. Как следствие, этот материал более жёсткий и выдерживает повышенные нагрузки.

Как отличить ПВД от ПНДЕсли сравнивать плёнки, полученные из LD PE и PE HD, то заметно, что первые имеют большую толщину и легче растягиваются, имеют характерный блеск и кажутся навощёнными. Напротив, плёнки из HD PE очень тонкие, более жёсткие, издают характерное лёгкое шуршание при смятии. Поверхность изделий из такого материала обычно не глянцевая, а матовая.

Золотая серединаСуществует интересная разновидность, именуемая смесовым полиэтиленом. Он получается путём смешивания расплавов LD PE и HD PE при производстве готовых изделий. Для корректировки свойств материала в расплав вводят модифицирующие добавки. Меняя пропорции LD PE и HD PE, можно получить более пластичный или более жёсткий материал.

Как мы уже отмечали, при увеличении количества поперечных межмолекулярных связей (ветвлений) полиэтилен приобретает пластичность и прочность. Для того, чтобы существенно увеличить количество таких связей, при синтезе полиэтилена при высоком давлении материал подвергают воздействию жёсткого ионизирующего излучения. Называют полученный полимер сшитым полиэтиленом. Его прочность настолько высока, что он успешно применяется для производства всевозможных труб, работающих при повышенном давлении.

Полиэтилен и его теплота сгорания

Сгорание полиэтилена. Важнейшей характеристикой теплота сгорания является для различных видов топлива. Чем выше теплота сгорания, тем выше эффективность использования топлива для нагрева, для работы двигателей и тому подобное.

Для технических и производственных нужд различают высшую и низшую теплоту сгорания. Первая включает в себя энергию, выделенную при полном сгорании некоторого объема вещества и плюс энергию, выделяемую при охлаждении продуктов сгорания. Вторая энергию, которая выделяется при охлаждении продуктов сгорания, не учитывает.

Подробнее про полиэтиленПолиэтилен является термопластичным полимером, продуктом переработки этилена. Широкое применение полиэтилена очевидно, его можно встретить как в простейших бытовых изделиях, так и в качестве конструкционного материала для очень сложного и ответственного промышленного оборудования.

Полиэтилен, как высокого, так и низкого давления, имеет очень высокую удельную теплоту сгорания. Ничего странного в этом нет, так как полиэтилен – это полимеризированный углеводород.

Диапазон теплоты сгорания полиэтилена, в зависимости от марки – от 44,0 до 47,2 МДж/кг (мегаджоулей на килограмм).

Для сравнения, средняя теплота сгорания бензина — 42 МДж/кг. А теплота сгорания древесины, издревле применяемой в качестве топлива – 13,8 МДж/кг.

Как показатель, теплота сгорания полиэтилена применяется при расчете категории пожаробезопасности. Для такого случая в качестве расчетной принимается величина для полиэтилена в 46,68 МДж/кг. Важными показателями также в таком случае являются температура воспламенения полиэтилена (306 градусов) и температура самовоспламенения (417 градусов). Категорий пожаробезопасности есть достаточно много, а самый негативный вариант развития событий при пожаре учитывают категории «А» и «Б». Если в помещении достаточно много полиэтилена, именно такие категории пожаробезопасности ему главным образом и присваиваются.

Учитывается теплота сгорания полиэтилена также при проектировании технологического оборудования для его переработки. С учетом количества выделяемой энергии при случайном возгорании полиэтилена такие материалы должны выдержать тепловую нагрузку и не разрушиться. Или же, по меньшей мере, должны препятствовать распространению пламени.

Отходы полиэтилена подлежат переработке. Часто они применяются в виде вторичного сырья, но, при невозможности или нецелесообразности повторного использования такого материала в производстве пластиковых изделий его утилизируют. Наилучшим способом утилизации полиэтилена является сжигание, использование в качестве топлива. В таком случае теплота сгорания используется для расчета количества получаемой тепловой энергии.

polymers.com.ua

Армированная полиэтиленовая плёнка

теплоизоляция полаПостоянно развивающиеся технологии толкают инженеров к новым открытиям, создаются все новые материалы для теплоизоляции не только пола, и не только стен, но и специализированные под кровлю, ламинат и т.д. И то, что раньше столь широко использовалось, забывается, уходит в прошлое. Одним из новых, современных материалов, которые сейчас используют в строительстве, является Изолайн ЛМ - теплоизоляция пола нового уровня. Его выбирают сегодня многие при строительстве собственных домов. Компания Стройдар осуществляет оптовые поставки изолирующих материалов для теплоизоляции самых различных поверхностей.

Сертификаты на материалы Ламинированный Изолайн Альтернативные теплоизолирующие материалы:

изолайн ламинированный фольгой

Применение Изолайна лм

качественная теплоизоляция полаИзолайн лм - это качественный, современный материал, который широко применяется для теплоизоляции. Он относится к светоотражающим утеплителям, которые представляют собой вспененный полиэтилен с покрытием из алюминиевой фольги с одной или нескольких сторон. Фольга исполняет функцию светоотражателя. Данный материал, обладая толщиной всего лишь в несколько миллиметров, отличается большим сопротивлением к теплопередаче.

В этом случае отражающий эффект равен 95%. В то же время коэффициент проникновения влаги не более единицы, что можно объяснить незначительной теплопроводностью вспененного полиэтилена из-за высокой отражающей способности чистой химически, полированной алюминиевой фольги и немалого количества замкнутых пор. Использование такого светоотражающего материала, как изолайн, позволяет, не увеличивая объем конструкций, увеличить их теплотехнические характеристики.

Основой утеплителя «Изолайн» является вспененный полиэтилен высокого давления, с дублированием алюминиевой фольгой. Используется для наружной и внутренней паро-, звуко- и теплоизоляции:

  • полов, стен, потолков в административных, жилых, производственных помещениях
  • систем холодного и горячего водоснабжения
  • воздуховодов, кондиционерных и вентиляционных систем
  • холодильных и морозильных камер
  • резервуаров, емкостей и т.д.

Заказать легко!

Закажите наши материалы прямо сейчас! Мы гарантируем вам исключительно качественные материалы, а цены вас приятно порадуют! Сделайте свой дом уютнее! Теплоизоляция пола и стен при помощи Изолайна лм будет действительно качественной и эффективной!

Для усиления эффекта можно заказать отражающую теплоизоляцию в нашей компании - мы располагаем различными новейшими материалами, которые необходимы для качественной теплоизоляции пола. Можно в нашей компании также заказать теплоизоляцию кровли. Это позволит избежать в летний период перегрева подкровельного пространства благодаря отражению внешнего теплового излучения.

Мы всегда поможет вам выбрать тот материал, который необходим именно в вашем случае. Звоните на номер 8(495)988-50-78!

stroydar.ru

Пленка полиэтиленовая техническая

Почему следует отдать предпочтение пленке полиэтиленовой технической?

Пленка полиэтиленовая техническая

Во многих сферах нашей жизнедеятельности используется такой материал, как пленка полиэтиленовая техническая, да и стоимость ее очень экономичная. Ее можно использовать при ремонтных работах или в сельском хозяйстве, при транспортировке товара или в других серах.

Где используется пленка техническая из полиэтилена?

Использовать такую плену можно по-разному, но, зачастую, она применяется в следующих отраслях:

  • строительство – это прекрасный изоляционный материал, который применяется, как защитное покрытие во время дождя, града или снега. Также используется и между напольным покрытием и бетоном, как изоляционный материал, а еще во время установки крыши;
  • ремонт. Здесь пленка полиэтиленовая техническая используется также, как защитный материал, ею укрывают полы и мебельные гарнитуры, когда происходит ремонт в частных зданиях;
  • сельское хозяйство. Используется полиэтилен для мульчирования почвы или теплиц, для хранения сельскохозяйственных продуктов.

Только стоит понимать, что в каждом конкретном случае используется различная по типу пленка. Если вы не знаете, какая вторичная пленка подойдет в вашем случае, лучше проконсультируйтесь с нашими специалистами – они помогут разобраться и подобрать необходимый материал.

Характеристики пленки полиэтиленовой

Казалось бы, что проще, идешь себе в специализированный магазин и покупаешь необходимый материал. Но не все так просто. Для того, чтобы правильно выбрать такое изделие, необходимо разбираться в его технических характеристиках. Ведь в каждом конкретном случае используется определенный вид такой пленки.

  1. Плотность, которая в нормальных условиях эксплуатации будет варьироваться в пределах 916-982, и от температурного режима этот фактор не зависит.
  2. Коэффициент теплопроводности напрямую зависит от плотности пленки.
  3. Теплоемкость.
  4. Цветовая гамма. Зачастую она бывает прозрачной, но можно встретить и серый, и белый, и даже черный цвет. Это может иметь значение для той сферы, в которой пленка полиэтиленовая техническая будет использоваться.
  5. Светопропускаемость. В некоторых случаях этот нюанс очень важен, и чем прозрачнее пленка, тем для некоторых сфер ее использования лучше.
  6. Толщина. Это важно, так как от этого фактора зависит срок службы такой пленки. И иногда потребители жертвуют таким качеством, как прозрачность, делая выбор в сторону срока эксплуатации. Но в этом случае нужно действительно подумать, какой фактор для вас важнее?
  7. Ширина, всегда обращайте внимание на этот параметр, ведь в противном случае, возможно, вам придется сшивать такую пленку.
  8. Длина.
  9. Стоимость, вторичный материал обойдется вам несколько дешевле, а по своим качествам практически ничем не уступает другим, более дорогим, аналогам.

Как видите, такую пленку можно использовать во многих сферах, а цена будет действительно бюджетной, и приобрести ее смогут и те люди, которые не располагают большими денежными сумами. Это главный и существенный плюс такого материла.

mosoblsbit.ru

несгораемые нить, бумага и полиэтилен

В сегодняшнем эксперименте мы изучим такое физические явление, как теплопроводность. Теплопроводность – свойство вещества “проводить тепло”. Из обыденного опыта мы знаем, что материалы делятся на те, которые хорошо проводят тепло, и те, которые плохо. К первым, например, относится дерево (по этой причине из него строят дома – тепло сохраняется внутри). Ко второй группе – металлы (вспомним ложечку, которую опускают в горячий чай, чтобы остудить его).

Используем теплопроводность для того, чтобы сделать несгораемые нитки, бумагу и полиэтилен. Эти материалы выбраны по одной простой причине: все они легко загораются. В этом легко убедиться, если поднести их к пламени свечи (см. видео. Внимание! Соблюдайте правила пожарной безопасности!).

Однако если в процессе нагревания они, например, будут плотно контактировать к металлом, то произойдет следующее: избыток тепла будет быстро распределяться по объему металлу, не приводя к сколько-нибудь заметному повышению температуры. Убедимся в этом на практике. Для этого возьмем толстый металлический стержень или трубку, обмотает его нитками или бумажной полоской и внесем в пламя свечи. Максимум, что мы получим – закопченную поверхность. А сами нитка или бумага (даже после продолжительного нагревания) не теряют своей прочности. Для этого достаточно потянуть за их концы.

Наиболее впечатляющим в этой серии опытов выглядит несгорающий полиэтилен. Для этого достаточно взять любой полиэтиленовый пакет, налить в него воды, и внести в пламя свечи. Кажется, что полиэтилен сейчас проплавится, и вся вода выльется из пакета. Однако в реальности ничего подобного не происходит: вода эффективно отбирает тепло от полиэтилена.

Домашнее задание:

Посмотрим внимательно на таблицу коэффициентов теплопроводности:

http://ru.wikipedia.org/wiki/Теплопроводность

Мы видим, что металлы действительно имеют высокие коэффициенты теплопроводности. Так, например, серебро – 430, а железо – 92. А вот вода – всего 0.6, что всего в 4 раза выше, чем у дерева. Означает ли это, что наши выводы в третьем опыте (нагревание воды в полиэтиленовом пакете) были неверными? Почему вода все-таки так эффективно отводит тепло от полиэтилена? За правильный ответ – бонус 20 рублей на ваш сотовый телефон.

livescience.ru


sitytreid | Все права защищены © 2018 | Карта сайта